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new approach called certainty control is developed where control energy expenditure is reduced by constraining
the expected final state to a function of projected estimate error. Conceptually, the constraint produces a
shrinking sphere about the predicted impact point with the radius being a function of estimated error. If the
predicted miss is inside or touching the sphere, thrusting is not necessary. The interceptor is modeled as a
satellite with lateral thrusting capability using two-body orbital dynamics. The target is modeled as an
intercontinental ballistic missile (IBM) in its final boost phase prior to burnout. Filtering is accomplished using
an eight-state extended Kalman filter with line-of-sight and range updates. The estimated relative trajectory and
variances are propagated numerically to predicted impact time and then approximated by splines, eliminating
the need to propagate new data repeatedly when present conditions are varied. A search is then made for a
new impact time and point that will minimize present interceptor velocity changes and final miss distance.
This control strategy, which is applied to two intercept problems, substantially reduces fuel consumption.
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Terminal guidance of a hypervelocity exoatmospheric orbital interceptor with free end time is examined. A
new approach called certainty control is developed where control energy expenditure is reduced by constraining
the expected final state to a function of projected estimate error. Conceptually, the constraint produces a
shrinking sphere about the predicted impact point with the radius being a function of estimated error. If the
predicted miss is inside or touching the sphere, thrusting is not necessary. The interceptor is modeled as a satellite
with lateral thrusting capability using two-body orbital dynamics. The target is modeled as an intercontinental
ballistic missile (IBM) in its final boost phase prior to burnout. Filtering is accomplished using an eight-slate
extended Kalman filter with line-of-sight and range updates. The estimated relative trajectory and variances are
propagated numerically to predicted impact time and then approximated by splines. eliminating the need to
propagate new data repeatedly when present conditions are varied. A search is then made for a new impact time
and point that will minimize present interceptor velocity changes and final miss distance. This control strategy,
which is applied to two intercept problems, substantially reduces fuel consumption.

Nomenclature () =denotes the second derivative with respect to

A = present acceleration, m/s- time
A, = initial acceleration, m/s-
A ,B,C,D = coefficients of splines (A, m/s 3; B, m/s-; C.

m/s; D, m) Introduction
a V,a = lateral thrust accelerations, m/sv cn NTERCEPTOR performance can be enhanced by using a
dA V, = differential change in velocity change I terminal guidance law that incorporates the dynamics of
E --expected value operator the interceptor and target plus the error knowledge of their
f = scalar cost function estimates. This paper develops a guidance scheme that
G, = uncertainty in final state minimizes lateral thrusting for a hypervclocity, exoatmos-
H = Hamiltonian, = cost function + constraint pheric orbital vehicle in the final 30 s of flight while it is

adjoined via Lagrangian multiplier attempting to intercept a boosting missile.
J = Jacobian matrix off vector Much work has been done in the area of air-to-air guidance
K = constraint weighting factor that has space-to-space application. Guelmanl.-' has derived a
L = cost function closed-form solution for pure proportional navigation. Singu-
mo = initial mass flow rate divided by mass, s- lar perturbation methods have been employed by Sridhar and
R = relative range, m Gupta 3 for air-to-air guidance. Design procedures using opti-
I =current time, s mal and stochastic control techniques abound.""s In the
[go = time to go, s works just cited, the force of gravity is assumed to act equally
V = relative velocity, m/s on the interceptor and target and is ignored in the relative
xf = final state dynamics. This flat-Earth assumption is adequate for air-to-
x, = predicted final state without control update air encounters, but not for space-to-space, except at short

using splines ranges. For orbital intercepts with large initial ranges, the
xyZi.r = x, y, z coordinate positions for interceptor force of gravity will affect the relative trajectory and should be

and target, m included in the equations of motion.
.1 V,,A VK = interceptor's velocity changes, m/s The literature for space-to-space guidance reveals many nu-
X= Lagrangian multiplier merical approaches for determining present velocity for future
S= Earth's gravitational constant rendezvous.'i 1- To date, analytic solutions for such intercepts
a = standard deviation exist only when the interceptor's impact conditions are pre-
Superscripts specified." These works do not address hypervelocity inter-
(C) - denotes best estimate cept involving seconds, but are concerned with a much slowerC) = denotes the first derivative with respect to time rendezvous process involving hours or even days.

The guidance scheme presented here attempts to minimize
lateral velocity changes by varying the impact conditions

Received April 28, 1989: revision received Jan. 16, 1990. Copyright through the use of splines. Splines were used by Johnson" in
1 1990 by C. Foha. Published by the American Institute of Aero- presenting a possible Earth-Mars transfer guidance algorithm.
nautics and Astronautics, Inc., with permission.
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Astronautics. Senior Member AIAA. used third-order polynomials for general trajectory optimiza-

lAssociate Professor Attendant, Department of Electrical tion. The splines result in faster searcheq by eliminating the
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.ochty orbital intercept that requires a fast and reasonably themselves to closed-form solution. These equations must be
accurate numerical search. propagated numerically to intercept time whenever the initial

Target tracking is accomplished with a ranging device and velocity is varied. The previous method will serve as the basis
¶te-of-sight sensors for in-plane and out-of-plane measure- (truth) model for this control problem using the numerical
ments. Noise-corrupted data is processed through an extended techniques found in Maron.',
Kalman filter (EKF) with serial updates occurring every 0.1 s. A Newton-Raphson method for solving nonlinear systems is

By constraining the estimated final state to a function of the employed to determine the proper values of the control
.- ojected estimate error, much needless thrusting can be elim- parameters. Let
,nated in the presence of poor estimates. This strategy can
substantially reduce the fuel consumption needed for inter-

u = V(8)

System Modeling
Here, the equations of motion for the target and interceptor

are developed. Atmospheric drag will not be considered in the

J,. namics because the interceptor is assumed exoatmospheric. be a solution of the nonlinear system
As3o, due to the interceptor's lateral thrusting limitation, theF F )1 1
:ongitudinal axis will be assumed to be parallel to the intercep- Af(u) Xr(ts0 ) -xi(ro) 0:or's initial velocity vector . P 11()[ Y T(tso) - yt(to) - -V agto 0 (9)The interceptor is modeled as a satellite traveling in excess

of 12 km/s with lateral thrusting capability using two-body |f(u) Zr(t1 o)- Z'(1Q) - a At L 0
orbital dynamics. Thrusting is prohibited along the longitudi-
.al (x) axis in the forward direction to prevent sensor contam- The effect of small velocity changes in Eq. (9) can be consid-
ination and in the rearward direction because of the large aft ered linear because the interceptor is assumed to travel at
nooster necessary to achieve hypervelocity speed. The equa- hypervelocity, resulting in a near straight-line trajpctory. Any
",ons of motion are as follows: error caused by this assumption will be accounted for in the

- Ax succeeding iteration when the proposed velocity change is
f= (x- + ")3/ (1) incorporated in th! nonlinear dynamics.

The initial contruil values must be incrementally changed to

-,u y/ satisfy Eq. (9). A linear approximation of the f vector for

S(x: + y + z 2)31; + aY (2) changes in u will yield approximate increments of the control
parameters. The lin-arized system becomes

A ZI
- (xy + y I + zi)3/2 +: (3) [.v1 L (u)

The target is modeled as an intercontinental ballistic missile [Jl dA V, yf(u) (10)

(ICBM) in its final boost phase using two-body orbital dynam- d,. A(u,)
ýcs. For tracking purposes, the intercept must occur prior to
,urnout. Acceleration due to thrusting is computed in the where J is the Jacobian matrix of the f vector evaluated at u:
direction of the ICBM's velocity vector. The equations of
motion are

A - A (4) o 0 txT(to)-x,(t 1o)- I

-A nr A Jr 0 -t,0 Itr(tW.)-I/(t1.)- AV-

(xr + yr + - (Xj + yj. ") 1 2

1A YT A yT To determine changes in the u vector, f is multiplied by the
Yr= ( + Z)'2 (+.k + 42 1/Z)"2  (6) negative inverse of J

_______+___ Azr r F b1
.r = -(x+-yA Zr -)/ + ( r+4r zi), (7) da -- - fA(u) (

(X .)12 +y2+t2)/dA V. = (J]'jz~~ (12)

Problem Statement and Truth Model Aooe.sjon 70o7!
Time-to-go and interceptor velocity changes are the control d

parameters that must be varied to minimize miss distance and
fuel expended (i.e., velocity changes). The mathematical rep-
resentation of this control objective is presented in the section Yr(-t*) -Y105.) - "1V, - 0 0
on certainty control, which follows. Miss distance is deter- lXr(to)- jX(t,o)lI,[o t0 3on_
mined by establishing a time remaining until intercept (time to -I t r.) - t,(Up) --- i V
go) and propagating the equations of motion forward. An 0 - (13)
iterative process can then be used to find the interceptor I Xr(1t 0) - Jr,0(t0) t• - --
velocity needed to bring the miss distance to zero. The differ- I )V1/
ence between current velocity and that needed for intercept, lXr(to)-Xt(t,o)1 0 0 .ty Codes
known as velocity to go, must be minimized. To accomplish L
this, the time to go is varied and the procedure just mentioned a• nd/ow
is repeated until a minimum velocity to go is found. To find the control parameters, the following procedure olao

The computation of needed velocity is time consuming be- should be used. First, establish a time to go with zero velocity
cause the equations of motion are nonlinear and do not lend changes, a good choice being the time to go that yields the

Ali VO10 I i
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point of closest approach. This time to go is determined by mal control, with reduced control resulting from a poor esti-
propagating the orbits forward until a minimum relative dis- mate. To accomplish this, the predicted final states are con-
tance is reached. Because the target is assumed to be in its final strained by a function of their variances at the final time. This
boost phase throughout the intercept, this time to go will be form of control will be called certainty control and is imple-
less than or equal to the time until ICBM thrust termination. mented by establishing the cost function
Second, propagate the dynamic equations (Eqs. (1-7)] for- AV; + AV-2
ward to the intercept time and determine thef vector from Eq. L -- .21)
(9). Changes to the control parameters are then obtained from 2
Eq. (12). The velocity changes are applied to the interceptor's subject to the constraint:
initial conditions and the procedure is repeated with the up-
dated time to go until convergence occurs. The resulting con- 17 +y; + q) -Kfa• + r,1 + 01]

trol parameters will drive the miss distance to zero with mini- f 2 0 (22)
mum velocity changes. The difference between needed and 2
present velocity are sufficient to determine the interceptor's The final state estimates (if, ;f, if) and their deviations (of,
thrust profile. oa,p a-) are determined by running the filter (Appendix A)

Spline Approximations forward to predicted impact time without measurement or
control updates and then representing their time history with

As discussed earlier, numerical propagation of the dynamic splines:
equations is very time consuming. It is convenient to approxi-

mate -he re!asive rajectorv by a polynomial, eliminating the x, = A.j + Bt•o + crio + D, (23)
need for repeated propagation. Cubic spiiuic lend themselves g(

well to this application.6.'.2 3 The current and final states can
be used to generate cubic splines along each axis of the form = ,+ + Cyto + Dg,

z, = A:t 3 + Bat + C~t + D: (25)

x(t) = At 3 
+ B1 + Ct + D (14)

By setting t to zero, D and C become the current position = (26)
and velocity, respectively, with time to go being the intercept -= y-Vo (27)
time. Changes in velocity will be reflected only in the C coef-

ficient, and the final state can be determined easily for any
intercept time. With this formulation, the determination of zf= Z,- aVZtgo (28)

the spline coefficients is relatively simple. The current state [let A + B,,o +Coto +D (29)
t = 0 in Eq. (14)1 gives D and C with no computations - go . . go

0 = x(O) (15) Ayf =A,t, + Bor + Crao + D0, (30)

C=(o) (16) a ,=At + BtB + Ct o + D, (31)

Conceptually, the constraint produces a deviation sphere"The A and B coefficients can be computed using the final about the predicted impact point. If the predicted miss is
states and Eq. (14) as follows: inside or touching the sphere, thrusting is not necessary. If the

predicted miss is outside the sphere, minimum thrusting is
x(tg) = Ato + Bt2 + Ct + D (17) determined to bring the miss to the surface of the sphere. As

the estimates improve, the constraint tightens and the sphere
so+ 2Bt + C (18) shrinks. The spline representations allow this stochastic prob-

lem to be solved deterministically. The constraint is adjoined
Because there are only two unknowns in Eqs. (17) and (18), via a Lagrange multiplier to the cost function to form the
algebraic manipulation yields Hamiltonian:s

A 21x(o) -x(to)1 [.i+o) + .(9)) H = L + f (32)
0 + . (19)(

30 30 To minimize the cost L while satisfying the constraint f, the

B 3(x(t.) -x(o)I ([2o) + Mt,.)] (20) partials of H with respect to the controls must equal zero
tso ?s 8H - aj X9 =0(3

There is an added versatility in using splines. Should the .a- V,- XI/t,° = 0 (33)
system model be changed, only the spline coefficients need be
changed. A search algorithm based on the splines will remain aH
the same, operating with the new coefficients. This is very =- a- -X2,e = 0 (34)

beneficial because recomputing the coefficients is far simpler
than altering an algorithm. 8H

To ensure accuracy, new spline coefficients are computed at" f +9xYf +

every cycle time. To accomplish this, the truth model is prop-
agated forward to the predicted impact time to obtain the +- 0ofai + a:;4:il)= 0 (35)
needed final states. By using these updated final states every

iteration, propagated roundoff error is eliminated in the spline with the dot term expansions computed in Appendix B.
coefficient computations. Equations (22), (33), (34), and (35) constitute four equa-

tions with four unknowns, which can be reduced to two equa-
Certainty Control tions and two unknowns using Eqs. (27) and (28). Substituting

If the controls associated with cost do not affect state esti. Eq. (27) into Eq. (33) yields
mate certainty, fuel may be conserved by using that certainty
to reduce the controls. By linking the controls to the certainty 1V- (36
of the estimate, a near perfect estimate would yield the opti- ' 1 ,t (36)

i
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Y, (37) 8) Now advance one time step. Propagate and update the
"-f + (37) EKF with the next set of sensor observations and return to step1 of this algorithm.

In a similar manner, substituting Eq. (28) into Eq. (34) yields Computer Simulation

.1V =XZ11t.o (3) Two cases are examined with time to go equaling 30 s. CaseI= t (38) 1 represents a head-on, I0-deg out-of-plane intercept, and case

2 represents a 10-deg out-of-plane tail chase. The interceptor is
__ _ initially traveling at 12 km/s at an altitude of 750 km with a

Z + (39) lateral acceleration range of 3-60 m/s2 in each axis. Thebooster's initial acceleration is 3.15788 m/s2 with a unitized
Equations (22) and (35) can now be solved in terms of X and mass flow rate of 0.01579 s-

:•,. Once known, AV, and AV. can be determined from Eqs. A time lag of 0.1 s is used for all algorithms when comput-
6) and (38). The parameters X and t,0 can be found by ing velocity changes. It is unrealistic to assume that the filter

unumerical techniques using the Jacobian can process measurements, the controller determine thrust
commands, and the thrusters respond to those commands all

fdtl F -A? instantaneously. One cycle time is chosen to allow the velocity
[1] 'dX . ~ .I (40) changes computed in the previous cycle to be implemented in

go] Uthe present cycle. The controller routines are built to take this
X! - 4 -K[oa - o> + a-f] lag into account. Also, thrusting is not permitted during the

f = ", 1 (41) first 3 s of an intercept to account for target acquisition. This"2 simulation, written in Fortran 77 to run on a Vax 8600,

+ =.X/ )'f)'f + .- K [uGO 4. + ayfoyf -a, oo,,,] (42) generates 100 Monte Carlo runs per case.

i.th the elements of the Jacobian matrix computed in Ap- Results
.. endix B. Seven algorithms were programmed to serve as a basis of

Should the states be perfectly known, the a terms will be comparison with the certainty control algorithm. Plan A uses
zero. In this case, the equations for certainty control reduce to the cost function incorporating velocity changes and miss
ýhose of optimal control formulation. Should the estimate be distance weighted by a weighting factor K (K = 10 for this
-oor, the a terms will be large and ,he inequality constraint of simulation).
Eq. (22) is met with very little (if any) change in velocity. This , ,
.demonstrates the principle of certainty control, where the L +L -+(43)
ýertainty of the estimate affects control energy expenditure. 2 2(3

Plan B uses the same loss function but with w. = o, a zero
Algorithm miss solution. Plan C uses a proportional navigation scheme

1) Propagate EKF forward one time step without measure- recognizing that the velocity vector on the target is changing.
ment or control updates and get new state estimates, 1(0), and The next plan is an optimal spacing algorithm where control
variances, 0(0), for next time step. Use the secant method to is applied based on control effectiveness.-'s Corrective thrust-
approximate k(0) and a(0). ing is applied when the control has (lip) the effect of the

"2) Reset rtp to (tso- 0.1) to account for advanced step from previous corrective thrust. A value of p = 1.75 was determined
step I (this paper uses a time step of 0.1 s). during the simulation of plan B to be the best value. The dual

3) Propagate EKF forward to intercept time (t',) without control algorithm- minimizes the expected value of Eq. (43) orupdates to get xi(t,o) and a0(tap). 2 • + a .,/ + 2. j ÷ -3 -, - .,I
4) Reset EKF to current time. EIL I = KV +
5) Determine the spline equations for ,i(t) and &(t) using the 2 2

data from steps 1 and 3. '
6) Determine the lateral velocity changes and new intercept + 1 E , +

time using certainty control. In other words, minimize 2+ E(44)

+ .1V.÷ Table 1. Case I performance head-on,_Sta darL 2 I-delg out-of-plane intercept

Mean Standard Mean Standard •;:
subject to the constraint miss. m deviation. m AV. rm/s deviation. m/s

Plan A. K = 10 0.502 0.224 83.82 6.99
f = xi" + 9f.: + If' - Kfeaofl + ao.I 5 0 (CE optimal)

2 Plan B, K =- o 0.360 0.171 90.39 7.24(CE optimal) .

where the subscript f denotes the final state at the new inter- Plan C 0.360 0.171 93.07 7.39
cept time. (It is not necessary to use splints to do this step. We (PRO NAV)a
chose splines to reduce computational burdens and allow a Optimum 0.361 0.171 37.19 8.50
solution that lends itself to deterministic techniques. The esti- spacing. 7 =1.75
mates and variances in the constraint equation make this Dual control. 0.501 0.224 83.82 6.99
problem stochastic, but by approximating them with spline K - 10
equations where time becomes a variable, a deterministic ap- Certainty 0.386 0.191 23.21 4.18
proach to the so'lution can be used.) control.

7) Reset ts, to the new intercept time and apply the velocity K - 0.4
changes from step 6. If the velocity change in a given axis is Truth with 0.545 0.264 83.69 7.18
below the minimum threshold, then do not apply the com- noise
puted a. V in that axis. Minimum threshold for this paper was Truth without 0 na 7.54 na
0.3 m/s (3.0 m/s

2 x 0.1 s time step). Maximum ,AV for any noise

axis is 60 ml/s. If ,a V exceeds this limit, it is reset to the limit. 'Proportional naleiation,
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The next algorithm is that of certainty control presented in Plan C is just as accurate as plan B, with slightly greater cost
this paper. The last two are truth models with and without resulting from large initial intercept range. This extra cost is
noise. The performance of the truth model vs the various attributed to the negligible gravity assumption used in the
algorithms is recorded in Tables I and 2. formulation of plan C. For the smaller ranges associated with

The data indicates the dual control's performance is no a tail chase, plan C was actually less costly than plan B.
better than the certainty equivalence formulation of plan A.
This is due to the fact that range is included as a measurement, 6.0

causing the control to have virtually no effect on improving
filter variance. Plan B is more accurate than plan A, but more
costly in energy. Again, this result is expected because the
formulation of plan B is based on infinite miss penalty
(K = o) for plan A. By optimally spacing the thrusts of plan
B, energy expenditure is considerably reduced with little or no
sacrifice in accuracy.

Table 2. Case 2 performance
lO-deg out-of-plane tail chase

Mean Standard Mean Standard
miss, m deviation, rn -IV, m/s deviation, m/s

Plan A. K = 10 0.190 0.100 129.61 13.29
(CE optimal) t

Plan B, K = c 0.126 0.061 132.65 13.32
(CE optimal) ,

Plan C 0.126 0.061 129.47 12.26
(PRO NAV)A A

Optimum 0.126 0.059 39.96 12.85
spacing, p =
1.75

Dual control, 0.190 0.100 129.61 13.29
K = 10

Certainty 0.136 0.076 29.74 9.10
control,
K=0.4

Truth with 0.379 0.204 123.57 11.61
noise

Truth without 0 na 9.52 na
noise -6.0 . t

'Proportional navigation. 0.0 10.0 20.0 30.0
Tt',E• (SEC)

Fig. 2 In-plane thrust profile of truth model for case 2.

6.0
6.0

. .. . .

-0.0

-6.01 1

-6.

0.0 10.0 20.0 30.0.0 I I
Til (~)0.0 10.0 20.0 10.0TIM. (S) IoiTIME (Ser)Fig. I In-plane thrust profile of truth model for case I. Figl. 3 In-plane thrust profile of certainty control for cane 1.
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5.0 estimated by some function (polynomial or otherwise). Also,

the constraint multiplier was assumed constant for this formu-
lation. A future area of research is to develop a multiplier that
is range or time dependent to further reduce interceptcr
thrusting. I

In summary, the approach identified by this research not
only improves the efficiency of hypervelocity intercept, but
can be applied to a broad range of stochastic problems where
control energy does not improve filter accuracy. It is also

................................................................................... possible to com bine the effects of dual and certainty control in
certain cases by initially using dual control to improve estima-
tor accuracy and then switching to certainty control. Endgame lilt
accuracy may be improved by switching from certainty controlI I to a certainty equivalence formulation just prior to impact.

SAppendix A: Extended Kalman Filtering
Optimal estimates of the interceptor and target are needed

for the search algorithms to converge properly. Because of the
................ ......................... ..................................... nature of the dynam ics and sensors, the relative position and

velocity must be estimated from sampled nonlinear measure-
ments. The estimation problem for a nonlinear system having
continuous dynamics and discrete-time measurements is ad-
dressed by Gelb. 26 The EKF was chosen over other estimation

S.. ............. ......................................... methods because the optimal estimate is determinate. That is,
the dynamics and observations of the interceptor and target
can be well predicted in the presence of Gaussian noise. The
EKF states are defined from Eqs. (5-11) as follows:

-60.0 10.0 X -X (A0 )

T1rE (SEC) X`2 = XTr-Xi (A2,

Fig. 4 In-plane thrust profile of certainty control for case 2. X]YTYI (M)

The effect of estimate uncertainty can be observed from the X4 =YýT-Y (A4)
tru:h model in-plane thrust profiles (Figs. I and 2). This
uncertainty causes needless and often counterproductive X5=ZT-Z1 (AM)
thrusting. In contrast, certainty control requires considerably
less energy expenditure (Figs. 3 and 4). This result is not x= Zt- z1 (A6)
surprising, as the formulation of certainty control is based on
reducing control energy in the presence of poor estimates. This x7 = A (A7)
form of control works well because filter variance is range
dependent. As range decreases, the control constraint tightens ms = m (AS)
and accuracy increases. Therefore, less fuel is used when range
is great and estimates are poor, with refinements made as The measurements of range and LOS angles are 4
impact nears. c( Szl(k )=, 'Xr +X +xi- + V,,(k ) (A.9) ii

Conclusions

In this paper, six guidance schemes were examined to deter- z,(k) = tan -(xs/xq) + V6(k) (A10)
mine their capability to minimize lateral velocity changes of a
hypervelocity orbital intercept vehicle. Optimal control using z3(k) = tan-l(x3/x, + VR(k) (A 1l)
certainty equivalence (plans A and B), proportional naviga-
tion (plan C), control with optimum thrust spacing, dual It is advantageous to process measurements one at a time.
control, and certainty control were all implemented for two This method, called serial updating,-7 eliminates the require-
cases. ment to compute a matrix inverse, thereby reducing computer

Certainty control can be effective in reducing energy expen- load and avoiding the computational problems associated with
diture when the controls associated with cost do not affect inverting an ill-conditioned matrix. Also, measurements may
state estimate certainty. If the controls can improve the esti- be skipped without reformulating the filter equations, allow-
mate, then dual control techniques may be more effective in ing greater flexibility in examining various tracking schemes.
reducing cost. Because range is included as a measurement, The simultaneous components of the measurement vector -.
lateral deviations do not noticeably improve the estimate, can be considered serially over a very short time span. The
allowing certainty control to significantly reduce thrusting, propagation noise w stems from using a fourth-order Runge-

Certainty control contrains the final condition to a function Kutta integrator with updates every 0.1 s on a 64-bit word.
of final estimator accuracy in the absence of updates. This
general approach is not limited to hypervelocity vehicles and w,.,.(t)-N(0. 2.21516 x 10-"8 m-/s)
would suggest other applications of this form to control inter-
cepts stochastically. w.,.,( 1 )-N(0, 5.52049 x 10- 2 m4/s3)

Dual control requires a measure of final estimator accuracy,
which was achieved by running the extended Kalman filter WA(t)-N(0, 4.29831 x 10- 2 m2-/s')
forward to intercept time without updates. This time-consum-
ing process could be eliminated if filter variances could be w,(t)-N(0. 2.493241 x 10- U/s') J
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